HOMEWORK 3 EXTRA EXERCISE 3 SOLUTION

Exercise 1. Compute the following coefficients. You do not need to expand the entire expression.
(a) What is the coefficient of $a^{4} b^{3}$ in $(a+b)^{7}$?
(b) What is the coefficient of $x^{4} y^{6}$ in $\left(2 y^{3}+5 x^{2}\right)^{4}$?

Solution The binomial expansion is in general,

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

This is what we will use to find the sought after coefficients.
(a) The coefficient of $a^{4} b^{3}$ in the expansion of $(a+b)^{7}$ is $\binom{7}{3}$. It accounts for the number of ways we can pick 4 copies of a out of 7 possible copies of a when we consider the product

$$
(a+b)(a+b)(a+b)(a+b)(a+b)(a+b)(a+b)
$$

Note that equivalently we can count the number of ways of picking 3 out of 7 copies of b to combine, but

$$
\binom{7}{3}=\binom{7}{4}
$$

that's an equivalent way of getting the answer.
Now

$$
\binom{7}{3}=\frac{7!}{3!4!}=5 \cdot 7=35
$$

so the coefficient of $a^{4} b^{3}$ in the expansion of $(a+b)^{7}$ is 35 .
(b) The coefficient of $\left(2 y^{3}\right)^{k}\left(5 x^{2}\right)^{4-k}$ in the expansion of $\left(2 y^{3}+5 x^{2}\right)^{4}$ is $\binom{4}{k}$, for any $0 \leq k \leq 4$. We are looking specifically for the coefficient of $x^{4} y^{6}$, and that is the term in the expansion corresponding to $k=2$. The term in the expansion looks like

$$
\binom{4}{2}\left(2 y^{3}\right)^{2}\left(5 x^{2}\right)^{2}=\left(\frac{4!}{2!2!} \cdot 4 \cdot 25\right) x^{4} y^{6}=600 x^{4} y^{6}
$$

So the coefficient of $x^{4} y^{6}$ is 600 .

